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Summary. Estimating and monitoring the quality of service of computer and communications
networks is a problem of considerable interest. This paper focuses on estimating link-level
delay distributions from end-to-end path-level data collected using active probing experiments.
This is an interesting large-scale statistical inverse (deconvolution) problem. We describe a
flexible class of probing experiments (flexicast) for data collection and develop conditions under
which the link-level delay distributions are identifiable. Maximum likelihood estimation using
the EM algorithm is studied. It does not scale well for large trees, so a faster algorithm based
on solving for local MLEs and combining their information is proposed. The usefulness of the
methods is illustrated on real Voice-over-IP data collected from the University of North Carolina
campus network.
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1. Introduction

Computer and communications networks form the backbone of our information society.
Over the last decade, these networks have experienced an exponential growth in terms of the
number of users, the amount of traffic, and the complexity of applications. It is important
for network engineers and internet service providers to be able to estimate and monitor the
quality of service (QoS) parameters such as link delays, dropped packet rates, and available
bandwidth. However, the decentralized nature of modern computer and communications
networks has made it difficult to assess performance. Traditional methods based on queueing
analysis focus on the behavior of one or a small number of routers and are inadequate in
characterizing the complexities of such networks. This has led to the emergence of network
tomography – an area that uses active and passive traffic measurement schemes to quantify
the performance and QoS of networks. A good review of the area and challenges can be
found in Castro, Coates, Liang, Nowak, and Yu (2004).

The term network tomography was introduced in Vardi (1996), which dealt with the
estimation of origin-destination traffic intensities based upon the total measured intensities
along individual links. See Tebaldi and West (1998); Cao, Davis, Vander Wiel, and Yu
(2000); and Zhang, Roughan, Lund, and Donoho (2003) for related work on this problem.
Active tomography deals with estimating link-level characteristics, such as loss rates and
delay distributions, by actively probing the network. This involves sending probe packets
from one or more sender nodes to a set of receiver nodes and measuring the end-to-end
characteristics. The goal then is to estimate (“recover”) the link-level information from the
end-to-end path level data. This paper focuses on delay distributions.
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Fig. 1. Left panel: Schematic of the UNC network; Right panel: Logical topology of the UNC network.

As an example, consider the emerging application of Internet or Voice over IP (VoIP)
telephony. VoIP is a technology that turns voice signals into packets and transmits them
over the Internet to the intended receivers. The main difference from classical telephony
is that the call does not use a dedicated connection with reserved bandwidth, but instead
packets carrying the voice data are multiplexed in the network with other traffic. For this
application, the QoS requirements in terms of packet losses and delays are significantly more
stringent than non-real time applications such as e-mail. Recently, the University of North
Carolina (UNC) entered the planning phase of deploying VoIP telephony and wanted to
assess its campus network to determine if it is capable of supporting the technology. To do
this, monitoring equipment and software capable of placing such phone calls was installed
throughout the campus network. The software allows the emulation of VoIP calls between
the monitoring devices. It then synchronizes the clocks and obtains very accurate packet
loss and delay measurements along the network paths.

Fifteen monitoring devices from Avaya Labs were deployed in a variety of buildings and
on a range of different capacity links through the UNC network. The locations included
dorms, libraries, and various academic buildings. The links included large capacity gigabit
links, smaller 100 megabit links, and one wireless link. Monitoring VoIP transmissions
between these buildings allows us to examine traffic influenced by the physical conditions
of the link and the demands of various groups of users. The left panel of Figure 1 gives
the physical connectivity of the UNC network. Each of the nodes on the circle has a basic
machine that can place a VoIP phone call to any of the other endpoints. The three nodes in
the middle are part of the core (main routers) of the network. One of these internal nodes,
the upper router linked to Sitterson Hall, also connects to the gateway that exchanges traffic
with the rest of the Internet. The measured data consist of end-to-end delays and losses.
We will use data collected from this study to illustrate our methodology in Section 8.

Although the physical structure of a network can be arbitrary (left panel of Figure 1),
the logical topology for the probing experiment can be represented more simply (right panel
of Figure 1). We will follow the common practice in the literature and focus attention on
logical topologies that can be described by trees: acyclic graphs with one vertex designated
as the root (see right panel of Figure 2). Formally, let T = (V , E) be a tree with node set
V and link set E . The nodes follow a canonical numbering scheme, starting from the root
node 0. All links will be named after the node at their terminus, so in Figure 2, link 1 refers
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to the link connecting nodes 0 and 1. The parent of node k ∈ V will be written f(k). In a
tree, all nodes have a parent except for the root node. Define f i(k) recursively as follows:
f i(k) = f(f i−1(k)), where f1(k) = f(k). Node k is said to be in layer L if fL(k) = 0. Let
D(k) denote the children of node k, which is the collection of nodes whose parent is k. Let
R denote the set of leaf or receiver nodes, i.e., nodes with no children. Finally, an internal
node is one with both a parent and a set of children. The left panel of Figure 2 shows a
simple binary tree with three layers. We will use it later in the paper to illustrate some of
the techniques.
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Fig. 2. Left panel: Three-layer, binary, symmetric tree; Right panel: A general tree with notation.

Packets can be sent from a source to a destination using two basic transmission protocols:
a unicast scheme that sends a packet from a source to one receiver at a time, and a multicast
scheme that sends a packet simultaneously to a set of specified receivers. In previous work,
the term multicast experiment refers to the situation in which all of the receiver nodes are
probed simultaneously. We will refer to it instead as an omnicast probing experiment. The
flexicast experiments in Section 3 are also based on multicast transmission, although they
do not involve sending the packet to all receivers in the network.

The estimation of loss rates based on active probing has been studied by several au-
thors (see Cáceres, Duffield, Horowitz, and Towsley, 1999; Nowak and Coates, 2001; Xi,
Michailidis, and Nair, 2006, and references therein) Link delay tomography was first stud-
ied in Lo Presti, Duffield, Horowitz, and Towsley (2002) in which the authors developed a
heuristic estimator for omnicast experiments based on solving polynomial equations, which
can be very inefficient. Liang and Yu (2003) developed a pseudo-likelihood approach by
considering all possible pairwise results from each individual full omnicast result. We will
compare these two techniques with our methods later in the paper. Shih and Hero (2003)
presented an estimator that models link delay using a point mass at zero and a finite mixture
of Gaussian distributions.

The rest of the paper is organized as follows. Section 2 describes the models and as-
sumptions. Section 3 describes the framework for probing studies, introduces flexicast
probing experiments, and studies conditions under which the link-level delay parameters
are estimable from end-to-end, path-level data. Section 4 deals with maximum likelihood
estimation using the EM algorithm and develops its computational and theoretical aspects.
Alternative, heuristic algorithms that are faster and scale well to larger networks are dis-
cussed in Section 5. An extensive numerical investigation of the procedures is also presented
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using the ns-2 network simulation software. Finally, the methods are illustrated on real data
collected from the UNC campus network.

2. Models and Assumptions

Following Lo Presti et al. (2002) and Liang and Yu (2003), we will consider nonparametric
estimation of the delay distributions using a discrete distribution with a fixed, universal
bin size. Specifically, let Xk be the delay accumulated on link k, taking values in the set
{0, q, . . . , bq}. Here q is the bin size and b is the maximum discrete delay (assumed to be
common for all the links). Although this framework seems restrictive, it is useful for a num-
ber of reasons. First, experience with real network traffic data shows that behavior tends to
vary with the particular network being studied, so selecting a particular parametric family
for modeling the link delay distribution is difficult. Moreover, the delay data typically ex-
hibit bursty behavior, in which case the tails of the distribution are of considerable interest.
The discrete model makes no assumptions about where the mass is located, so the tails of
heavy-tailed distributions can be estimated provided we have a sufficient number of probes.
The bin size can be chosen adaptively after the data are collected. Smaller bin sizes can be
used to estimate detailed information about the distribution. Large bin sizes can be used
to obtain tail information. Examples of this will be discussed in the data analysis section.

Throughout the paper, we will ignore losses or infinite delays. One can always estimate
the loss rates and the finite delay distributions separately and combine the results to esti-
mate the overall network behavior. In addition, we make the assumption (common in the
network tomography literature) that the packet delays are temporally independent and that
the delay of a packet on a link is independent of the delay on the other links in the path.
The assumption of temporal independence is reasonable as long as the interval between
probes is large enough. Temporal stationarity is reasonable as long as the probing period
is short enough to avoid major network changes. The adequacy of the spatial assumption
will depend on the particular network being studied and whether there are other physical
links connecting the nodes.

The data are collected by recording the total delay that a packet experiences as it travels
from the root node to the receiver nodes. For example, in the right panel of Figure 2, probe
packets would be sent from node 0 to various collections of nodes 2, 3, 6, 8, 9, 10, 11, 12, 13,
14, and 15 and the delays experienced along their corresponding paths would be recorded.
Physically, each end-to-end delay is the sum of the individual link delays along the path. If
a scheme has a collection of k receivers, a single observation would be a k-tuple of delays.

Let P0,k denote the path from node 0 to node k, and let Yk =
∑

i∈P0,k
Xi be the

cumulative delay accumulated from the root node to node k. For example, Y3 = X1 + X3

in the right panel of Figure 2. The measurements obtained from a delay tomography
experiment consist of cumulative delays Yr, r ∈ R. Let αk(i) = P{Xk = iq}, i = 1, ..., b.
Our objective is to estimate this set of values for k ∈ E and i in {0, 1, . . . , b} using the Yr

measurements.

In the following, we will use the notation ~αk = [αk(0), αk(1), . . . αk(b)]′ and ~α =
[~α′

0, ~α
′
1, . . . , ~α

′
|E|]

′. Let πj,k(i) be the probability that the delay accumulated on path Pj,k is

equal to i units. This is a function of ~α.
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3. Flexicast Probing Experiments

While the omnicast probing experiment is easy to implement, it suffers from several disad-
vantages. Suppose there are R receivers and the total number of possible bins associated
with the path-level delay distribution of the ith receiver is Bi. Then, the total number of
possible outcomes is of order

∏R
i=1 Bi which can be a huge number. As we will see later,

the computational efficiency of most estimation methods depends on this number. As an
example, let each link-level delay distribution have the same number of bins: b = 4. Further,
suppose we have a symmetric binary tree with 5 layers. Then, there are R = 16 receivers
and Bi = 19 for the path-level delay distributions of all the receivers, so the approximate
number of possible outcomes is 2.8 × 1020.

A second, perhaps more important, issue is the lack of flexibility as it involves probing
the entire network each time. In practice, we are interested in monitoring the network over
a period of time, and so we need a flexible scheme that allows us to probe different parts
of the network with different degrees of intensity depending on where there are bottlenecks
or quality of service problems. We consider a flexible class of probing experiments called
flexicast experiments in order to address these problems in the context of delay tomography.

Define a k-cast scheme as one that sends probes from a receiver to specified set of
k receiver nodes. For example, for the tree on the right panel of Figure 2, 〈2, 3〉 is a
two-cast (or bicast) scheme while 〈6, 12, 13, 14, 15〉 is a five-cast scheme. A flexicast ex-
periment, C, is a combination of k-cast schemes, Cj , j = 1, ..., M , with possibly different
values of k, that allows one to estimate all of the link-level parameters. Returning to
Figure 2, one flexicast experiment made up of a collection of bicast and unicast schemes
is C = {〈2, 3〉, 〈6, 12〉, 〈13, 14〉, 〈8, 9〉, 〈10〉, 〈11〉, 〈15〉}. Another that uses larger k-casts is
C = {〈2, 3〉, 〈6, 12, 13, 14, 15〉, 〈8, 9, 10, 11〉}.

A natural question is: When will a flexicast experiment lead to identifiability? We
provide below a necessary and sufficient condition. The proof is based on the idea that an
individual k-cast probe can identify all of the path distributions between branching nodes
on its subtree. It suffices for the collection to be rich enough in terms of subtrees that the
individual links can be expressed as functions of paths from different schemes. We formalize
this intuition in the following Proposition. The proof is deferred to the Appendix.

Proposition 1. Let T be a general tree network, and suppose its link delay distributions
are discrete. Let C be a collection of k-cast schemes Cj , j = 1, ..., M . The link-level delay
distributions are identifiable if and only if: (a) For every internal node s ∈ T \{0,R}, there
is at least one k-cast scheme Cj ∈ C, with k > 1, such that s is a branching node for Cj,
and (b) every receiver r ∈ R is covered by at least one Cj ∈ C.

Remark 1: We have restricted attention to discrete distributions as they are the focus of
the present paper, but the result holds more generally. First, the result can be shown to
hold as long as the distribution has at least one point mass. It will also hold for purely
continuous distributions under some conditions (such as higher order moments depending
on the mean). It does not, however, hold for arbitrary continuous distributions. This can
be seen easily using a two-layer tree (the top two layers of the tree in the left panel of Figure
2) with a source node 0, internal node 1 and receiver nodes 2 and 3. Let the link-level delay
random variables be X1, X2, and X3 and the path-level delay random variables at receiver
nodes 2 and 3 be Y2 = X1 + X2 and Y3 = X1 + X3. Suppose the Xi’s are independent
N(µi, 1). Then, we cannot recover the µi’s from the joint distribution of Y2 and Y3.
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4. Maximum Likelihood Estimation

Active delay tomography is a large-scale inverse problem. For example, consider the omni-
cast problem for the topology given in the right panel of Figure 2. Here we must use the
11-dimensional end-to-end measurements to estimate the 15 link delay distributions. The
key is the dependence among the 11-dimensional data induced by the simultaneous probing.
This dependence gives us additional information that allows us to deconvolve the path-level
delay into link-level information. We consider maximum likelihood estimation first.

We need some additional notation. Let T Cj be the subtree probed by scheme Cj ∈ C,

with node set VCj and link set ECj . Let X Cj = {0, 1, . . . , b}|ECj | be the set of all possible link
delay combinations that could arise from this scheme. Each x ∈ X Cj is an |ECj |-tuple giving
a possible link-delay combination. Let the function y(x, T Cj ) give the end-to-end delay
arising in scheme Cj from link outcome x ∈ X Cj . Define the set of all possible end-to-end
delays as YCj = {y(x, T Cj )|x ∈ X Cj}. Let γCj

(y) = P{Y Cj = y}, the probabilities for the
end-to-end experimental outcomes.

We illustrate this notation using the right panel of Figure 2. Suppose we probe the pair
〈2, 3〉. Let b = 1 so Xk ∈ {0, 1}. The link set is E〈2,3〉 = {1, 2, 3}. Assume that only a single
probe packet is used for this scheme, and it experiences link delays of 0, 1, and 1 on each
link, respectively. We then have x = (0, 1, 1) and y = (1, 1). The probability of this link
delay set is P{X〈2,3〉 = (0, 1, 1)} = α1(0)α2(1)α3(1). The probability of this end-to-end
outcome is P{Y 〈2,3〉 = (1, 1)} = α1(0)α2(1)α3(1)+α1(1)α2(0)α3(1) which is the sum of the
probabilities for the link outcomes which can give rise to this end-to-end outcome.

4.1. EM Algorithm
The discrete nonparametric distribution framework results in multinomial outcomes for
path-level data. Specifically, the observations consist of the number of times that one
observes each individual outcome ~y from the set of outcomes YCj for a given scheme. Denote

these counts as N
Cj

~y
. Consider the likelihood equation

l(~α;Y) =
∑

Cj∈C

∑

~y∈YCj

N
Cj

~y
log[γCj

(~y; ~α)]. (1)

This expression is difficult to maximize directly. However, it is a classical example of a
missing data problem: if the counts for the unobserved link delays were known, the maxi-
mization would be fairly straightforward as the link outcomes are also simple multinomial
experiments. The EM algorithm is a natural candidate for computing the maximum likeli-
hood estimates in this setting. For distributions in exponential families, we need to impute
just the sufficient statistics for each link: the counts for the number of times that Xk took
on each value.

The E-step can be broken into two parts. Assume that we have some parameter vector
~α(q−1). First, we compute the expected number of times each link delay vector, ~x, occurred
as

N
Cj (q)
~x =

P{ ~XCj = ~x}(q)

P{~Y Cj = ~y(~x)}(q)
N

Cj

~y . (2)

Then, we use these values to compute the number of times that probes on link k had a
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delay of i units as

M
(q)
k,i =

∑

Cj∈C:k∈T Cj

∑

~x∈XCj :xk=i

N
Cj (q)
~x

. (3)

We also need to keep track of mk which is the total number of probes that crossed link k.
The M-step is quite simple once the sufficient statistics have been imputed.

αk(i)(q) =
1

mk

M
(q)
k,i (4)

4.2. Partitioning
The computationally challenging aspect in our setting is to partition the observed end-to-
end delays into the set of possible link delay combinations. These details are given next.

Consider the left panel of Figure 3. Suppose that this is the probing tree for a five-cast
experiment and that the maximum link delay is b = 2. Suppose further that a single probe
results in the observed delay vector Y = [2 3 3 4 3]. We need to systematically partition
this end-to-end delay vector into the complete list of all possible link delay vectors that give
this result. We move top to bottom, identifying possible delays for links starting at the top
of the tree and moving downward. We begin by listing possible link delays for the first link,
between nodes 0 and 1, and leaving the rest of the delays as path delays. This amounts to
imagining the tree takes the form of the shrub shown in the right panel of Figure 3, with
each branch of the shrub having a maximum delay determined by b and the number of links
from node 1 to each of the receivers.

2 3

6

7 8

5

4

1

0

T

L L L L L1 2 3 4 5

Fig. 3. Partitioning example: probing subtree (left panel) and its corresponding shrub (right panel).

To get the lower bound of the possible delays for the first link, consider the minimum
delay possible on this link that will give the observed values. The lower bound is the
maximum of a set containing zero and each observed value minus the maximum delay that
could be obtained on its branch, Yr − grb, where gr is the number of links hidden in the
branch of the shrub connecting receiver r to the splitting node. For this example, the value
is one. The upper bound is simply the minimum of b and the set of observed values. Here
the value is two. This allows us to expand the observed delay into the set of link 1 delays
and the remaining delays:

[

2 3 3 4 3
]

→
[

1 1 2 2 3 2
2 0 1 1 2 1

]

. (5)

We have now isolated the delays that could occur on the first link. We have also isolated
the delays that could occur on the second and third links. Now we need to expand the
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triplets [2 3 2] and [1 2 1]. This is done exactly as before by considering only the portion of
the tree rooted on the link between nodes 1 and 4. Each triplet is an end-to-end observation
from this portion of the tree. For each set, we imagine the tree to be a three-branch shrub
and expand the observation on the possible values that could occur on link 4:

[

1 1 2 2 3 2
2 0 1 1 2 1

]

→













1 1 2 0 2 3 2
1 1 2 1 1 2 1
1 1 2 2 0 1 0
2 0 1 0 1 2 1
2 0 1 1 0 1 0













. (6)

Partitioning the second shrub gave us the range of values for links 4 and 5 leaving all
the pairs comprising the last two columns. Each pair can be partitioned into the three
component parts of this remaining shrub to give us the full partition for the observed delay
on this tree:













1 1 2 0 2 3 2
1 1 2 1 1 2 1
1 1 2 2 0 1 0
2 0 1 0 1 2 1
2 0 1 1 0 1 0













→

























1 1 2 0 2 1 2 1
1 1 2 0 2 2 1 0
1 1 2 1 1 0 2 1
1 1 2 1 1 1 1 0
1 1 2 2 0 0 1 0
2 0 1 0 1 0 2 1
2 0 1 0 1 1 1 0
2 0 1 1 0 0 1 0

























. (7)

Formally, let a shrub be any tree graph with a single internal node which has one or more
children that are all receivers. Partitioning the shrub is all that is required to partition any
tree or subtree. By moving downward from the top and expanding one link at a time, we
can ignore any structure below the link of interest. The tree becomes a shrub by considering
each receiver descended from the link of interest to be on a separate branch. After expanding
the desired link, the remaining delay can again be partitioned using the shrub algorithm.
A single recursive function is all that is required: it would partition the tree as if it were a
shrub and then call itself to partition the sub-shrubs.

The algorithm for the general shrub with r receivers is quite simple. Let Y = [Y1, . . . , Yr]
be the delay observed on the shrub. Further, let t be the maximum delay that can be
observed on the trunk and let li be the maximum delay that can be observed on leaf i. We
have

a = max
{

0, max
i

{Yi − li}
}

and (8)

z = min
{

t, min
i
{Yi}

}

(9)

as the minimum and maximum possible values for the trunk delay. Thus, in one for-loop it
is easy to make the expansion:

Y = [Y1, . . . , Yr] → X =











a Y1 − a . . . Yr − a
a + 1 Y1 − (a + 1) . . . Yr − (a + 1)

...
...

. . .
...

z Y1 − z . . . Yr − z











. (10)
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4.3. EM Complexity
To study the complexity of a single EM iteration, consider first a specific k-cast scheme.

There are b|T
Cj | link delay outcomes for this probe. For each of these, there are |T Cj |

multiplications to compute the probability of the link delay outcome. For each outcome,
there is also a single addition to tally up the end-to-end probabilities and a single division to
compute the conditional probability of each outcome given the end-to-end outcome. Finally,

there are |T Cj | additions to tally up the sufficient statistics. Overall, this gives us O{b|T Cj |}
operations. The largest subtree sets the complexity for the E-step at O{b|T Clarge |} where
Clarge is the experiment on the subtree with the most links. The M-step is trivial consisting
of |Eb| divisions.

There are a few things to note. First, mixtures of bicast (k = 2) and unicast schemes
offer the best complexity while meeting the identifiability conditions. Additionally, they
scale better than k-casts with larger values of k. In particular, an omnicast scheme does
not scale well.

If the tree grows in size but not in depth, then the bicast schemes should scale well
because this will simply result in more bicast schemes rather than more complicated bicast
schemes. This property does not hold for omnicast schemes which have complexity O{b|E|}.

Also of note, the complexity stated here is the extreme worst case based on observing
every possible delay combination from every probing experiment. In practice, both the
partitioning and estimation only consider the observed delays which will significantly reduce
the average-case complexity.

Unfortunately, the EM-algorithm does not scale well as the tree gets deeper for any
k-cast scheme. For such topologies, we explore alternative fast estimators in a later section.
Note, however, that the EM algorithm can be made computationally more efficient through
parallelization. Notice that the E-step involves computing a sum that ranges first over the
schemes and then over the outcomes for that experiment. This sum can be broken down
into component pieces which can be computed simultaneously and combined.

4.4. Numerical Investigation of EM-algorithm
This section studies effects of the tree size and the number of bins (in the discrete delay
distribution) on the convergence of the EM algorithm. These two factors determine the
number of model parameters. In practice, one has flexibility over the number of bins but
has limited control over the tree size. For example, in a monitoring situation, a coarse dis-
tribution can be estimated quickly and still provide enough information to detect anomalies
in the network. On the other hand, one can only obtain a smaller tree by lumping several
links together and eliminating some of the receivers.

Consider first the effect of the tree size, in terms of both number of links and layers. We
start with a two-layer symmetric binary tree so that there is a total of three links. Then,
we add two children at a time. So the five-link tree corresponds to adding two children
to one of the receiver nodes. The seven-link tree adds two children to the other receiver
nodes (so that this is just a three-layer symmetric binary tree). We proceed in this manner
until we get the four-layer symmetric binary tree with 15 links (see x-axis of left panel of
Figure 4). The remaining model components are held fixed. In particular, each link has a
five-bin uniform delay distribution chosen because it provides maximum entropy, thus it is
the most difficult to resolve. We use a flexicast experiment that is a minimal set of bicast
schemes that satisfy the identifiability conditions. Some additional studies indicated that
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convergence for the EM algorithm does not seem to depend greatly on the number of probes
used. Hence, in these investigations, each bicast scheme used 1000 probes for each link in
its subtree. For each tree size, 50 sets of data were generated and used for estimation. The
convergence criteria was a change in the log-likelihood of less than 10−4. The left panel of
Figure 4 shows the number of iterations required for convergence for each data set. The
average number of iterations for each size is plotted with standard deviation error bars.
This suggests that the average number of iterations seems to be increasing at a faster than
linear rate (perhaps exponential) with the number of links. This is a further indication that
the EM algorithm does not scale well to larger networks.

Next, consider the effect of the number of bins in each link with uniform delay distri-
butions. The number of bins on each link was varied from two to 15. We considered both
two-layer and three-layer binary symmetric trees with three and seven links respectively.
Again, a minimal bicast experiment with 1000 probes per scheme was used. The results for
both trees are shown in the right panel of Figure 4. In this scenario, the average number of
iterations seems to grow approximately linearly with the number of bins on each link. This
is an important observation that we will exploit later in developing a faster algorithm.
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Fig. 4. Left panel: Number of iterations versus tree size (number of links); Right panel: Number of
iterations versus bin size for 2- and 3-layer trees

4.5. Asymptotic Properties of the MLE
Given the multinomial nature of the underlying k-cast schemes, the asymptotic properties
of the MLE mostly follow from general principles. The difference arises because the flexicast
experiments imply that individual probes are not i.i.d. The proposition below establishes
that the Fisher information matrix is positive definite at the true value ~α0. Thus, the
likelihood has a unique maximum in a local neighborhood of the true value ~α0.

Proposition 2. The Fisher information matrix I(~α0) for the maximum likelihood es-
timator based on end-to-end quantized measurements from a flexicast experiment C is finite
and positive definite.

The proof can be found in Lawrence (2005). The main idea is to treat the Fisher
information as the covariance of the score function and then consider various hypothetical
data sets to establish that it must be positive definite.
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Proposition 3. Let n
Cj

n
→ λCj as n → ∞ with 0 < λCj < 1 for j = 1, ..., M . Then,

~αMLE → ~α0, a.s., and
√

n(~αMLE − ~α0) ⇒ Z, where Z ∼ N{~0, I−1(~α)}.

Proposition 3 follows from Proposition 2 using standard arguments (Lawrence, 2005).

5. Faster, Heuristic Algorithms

5.1. Grafting
We propose a method called grafting which computes the “local MLE” on each subtree and
uses peeling to combine the results. Shown in Figure 5, peeling is the process of using a
known path distribution and a known distribution from one end of that path to solve for
the distribution on the other end (see the proof of Proposition 1). In essence, grafting treats
each k-cast scheme as an omnicast experiment on the probing subtree. It uses EM to solve
for the MLE of the logical links on this subtree and then uses peeling to get estimates for
individual links. For collections of bicast and unicast scheme, this technique scales very
well because the EM algorithm is applied to a series of three-link, two-layer trees. Thus
the complexity is a cubic polynomial in the number of bins, a vast improvement over the
standard MLE complexity. Based on the investigations discussed previously, increasing
the number of bins on the links increases the average number of iterations approximately
linearly while adding links tends to increase the required iterations exponentially. This local
scheme takes advantage of this fact by trading links for bins.

π02: known

α2: unknownα1: known

Fig. 5. Peeling is the process of using a known path distribution and the known distribution for one
end of the path to solve for the distribution of the other end.

We will explain the details using a flexicast experiment with just bicast and unicast
schemes. First, consider a bicast scheme and the corresponding subtree. Let the trunk
have t links and the two branches have l1 and l2 links respectively. The subtree has just
three logical links with varying numbers of bins on each: the trunk has tb + 1 bins and the
branches have l1b + 1 and l2b + 1 bins. We apply the EM algorithm to this logical subtree
and solve for its MLE. This is done for all of the bicast schemes. This gives the estimates
for the trunks and branches of all the bicast subtrees.

Individual links can be now be obtained in one of several ways. Consider first the
simple peeling from the proof of Proposition 1. This is straightforward and non-iterative
although not very statistically efficient as only some of the bin probabilities from each known
distribution are used in computing the unknown distribution. At least one pair must split
at node 1, so at least one of the local MLEs must give us an estimate for link 1. Now, at
least one scheme gives us the local MLE for the path from the root node to every child
of node 1. So the individual links up to these points can be identified through peeling.
This process continues down the tree identifying each link. The receivers covered by bicast
experiments can be identified as the branches in a subtree or by peeling from the branches.
The receivers covered by only unicast experiments can also be identified by peeling.
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We now propose a more sophisticated peeling mechanism. This is a fixed-point type
algorithm that arises from postulating an EM algorithm for imaginary data. Imagine that
we send n probes across the path. Form data by setting nd = nπ0,2(d). The data are counts
of the number of times delay d was observed on the path for all possible d. In the E step, we
want to compute Mi, the expected number of times that delay i was seen on the unknown
link. After the q-th iteration, this is given by:

M
(q+1)
i =

b
∑

j=0

α
(q)
2 (i)α1(j)

π
(q)
0,2(i + j)

ni+j , (11)

where ~π
(q)
0,2 is updated with each update of ~α

(q)
2 . Note that this is not the quantity used to

generate the data. Since we obtain our estimates by dividing Mi by n, we get the following
equation:

α2(i)
(q+1) =

b
∑

j=0

α
(q)
2 (i)α1(j)

π
(q)
0,2(i + j)

π0,2(i + j). (12)

This equation is no longer based on our imaginary data. It is run until ~α2 approaches its
fixed point. Note that this fixed-point algorithm is simply an EM algorithm for computing
one link-level distribution from the path-level and other link-level distributions and meets
standard conditions for convergence. Unlike the simple method, this peeling function uses
all of the information from the two known distributions.

The peeling method can lead to multiple estimates for some links. The easiest way to
address this problem is is to combine them, using either a simple average or a weighted
average. For the latter, if we have two estimates of ~α1 from experiments C1 and C2, we can
combine them as follows to get

~̃α1 =
nC1~αC1 + nC2~αC2

nC1 + nC2
. (13)

It can be shown that the grafting algorithm yields estimators that are consistent and
asymptotically normal. The computation of the asymptotic variance is complicated and the
simplest way to compute the variance is to use bootstrap or other resampling methods.

5.2. A Comparison of the Various Estimators
5.2.1. Other Estimators in the Literature

Two other estimation procedures have been proposed in the literature for the delay to-
mography problem. Both are based on omnicast probing and rely on the same modeling
assumptions as those presented here: discrete delay with temporal and spatial indepen-
dence. The first, discussed by Lo Presti et al. (2002), depends on solving polynomials. At
some link k, the estimator uses the data from the subtree rooted at the link to create a
polynomial for each unit of delay, i. The degree of the polynomial is |D(k)|. The second
root of this polynomial give us the cumulative probability of delay i on link k. The principal
drawback of this estimator is that it does not use all of the information available. End-to-
end delays that are larger than the largest allowable link delay are ignored. Additionally,
the nature of the estimator allows inappropriate results from the polynomial solution such
as negative values or values greater than one.

The estimator by Liang and Yu (2003) is based on a pseudo-likelihood approach. The
complexity of the omnicast experiment is reduced by looking at just bicast projections – all
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Table 1. Three-Layer Tree Comparison: Average computing time (in seconds).
Estimator MLE PLE Polynomial All-Pairs Min+1 All-Pairs Min+1

MLE MLE Graft Graft

Time 46.93s 32.68s 3.96s 17.19s 11.11s 9.11s 5.59s

pairwise combinations – and using a pseudo-likelihood that treats them as independent. For
example, the network in the right panel of Figure 2 has 11 receivers, so the omnicast experi-
ment result in 11-dimensional delay observations. There are 55 possible pairs of receivers, so
the pseudo-likelihood scheme treats all the possible pairs of delays as 55 independent bicast
observations. The motivating idea is that processing the data as pairs is computationally
much more efficient than processing the omnicast data. This can be justified if the gain in
computational speed offsets the loss in statistical efficiency.

5.2.2. Computational Efficiency

Computational speed of the estimators is clearly a major consideration in real applications.
Network monitoring requires the ability to solve the inverse estimation problem very quickly.
In this section, we investigate the computational efficiencies of the various methods for
several different tree structures. Specifically, we compare the efficiencies of the MLEs based
on omnicast probing, all-pairs bicast experiment, and min+1 bicast experiment.

Recall that a minimal flexicast experiment refers to a combination of bicast and unicast
probing schemes that satisfy the identifiability condition. For a symmetric binary tree, this
consists of just bicast schemes. To see this, consider the three-layer, binary, symmetric tree
in the left panel of Figure 2. The minimal bicast experiment is {〈4, 5〉, 〈5, 6〉, 〈6, 7〉}. This
experiment is unbalanced as receiver links 4 and 7 are only covered once while links 5 and
6 are covered twice. A more balanced approach is obtained by adding pair 〈4, 7〉. This
ensures that each link on a particular layer of a binary, symmetric tree is covered by the
same number of experiments. We refer to such experiments as min+1 flexicast experiments.

In addition to the MLEs, we also consider the pseudo-likelihood estimator, the poly-
nomial estimator from Lo Presti et al. (2002), and grafting for all-pairs bicast and min+1
bicast experiments. All of the estimators were implemented using Matlab with the com-
binatorial partitioning components of the likelihood-based methods written in C. The link
delays follow a five-bin truncated geometric distribution. The parameters of the distribu-
tions were varied in a manner to keep the situations realistic: the interior links have high
probability of zero as compared with edge links to simulate the difference between internal
links with large bandwidth and smaller local links. The efficiency comparisons were based
on 100 simulated data sets and are shown in Table 1.

The polynomial estimator is, of course, the fastest. This is partially driven by the fact
that it is solving quadratic equations in this example (binary tree) and the formulas for the
estimates are obtained explicitly. The effect of having a large number of children on the
polynomial estimator will be investigated later. We will also see later that this algorithm
can be considerably inefficient in a statistical sense. As to be expected, the PLE is faster
than the MLE based on the full EM; however, it does not gain as much over the MLE
as does the pure bicast algorithm. The all-pairs bicast is more than twice as fast as the
likelihood-based multicast estimators, while the PLE does not seem to benefit from an order
of magnitude gain.
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Table 2. Computational speeds of estimators applied to data from the right panel
of Figure 2

Estimator PLE Min Pairs MLE All Pairs Graft Min Pairs Graft

Avg. Time 401.27s 10.12s 41.61s 4.99s

Table 3. Comparison of computation
time for Grafting and the Polynomial es-
timator on shrubs with varying numbers
of children.

Children 2 6 10

Grafting .48s .84s .99s

Polynomial 1.02s 1.08s 1.13s

Unbalanced Tree: Here we consider the tree structure shown in the right panel of Figure
2. We investigate only the pseudo-likelihood estimator, the minimum-pairs bicast MLE, the
all-pairs grafting procedure, and the minimum pairs grafting procedure. The polynomial
estimator was dropped due to the difficulty in implementing it for general trees. It is studied
below however for another situation. The link delay distributions were again chosen to be
a five-bin, truncated geometric. Table 2 shows the results of the comparisons. The pseudo-
likelihood is the slowest. The all-pairs grafting requires a tenth of the computation time of
the PLE despite sharing similar amounts of data. The flexicast experiment with minimum
bicasts has a smaller number of pairs, so it should be expected to save in computational
time. The full MLE for this minimum pairs experiment is about 40 times faster than
the PLE in this example. The grafting procedure with minimum pairs is extremely fast,
comparable in speed to the time achieved by the polynomial estimator on the simpler tree
discussed previously.

Shrub Comparison: Here we investigate only the two fastest estimators: the grafting
procedure with minimum bicast pairs and the polynomial estimator. We study a set of
simple cases: shrubs with increasing numbers of children to see how the performance varies.
For each configuration, we generated 1000 data sets from truncated geometric distributions
on each link. Table 3 lists the average computation times for shrubs with two, six, and
10 children. The grafting procedure is uniformly faster on this test, even when it has to
combine information from five trees in the 10-child example. The polynomial estimator
performs at its best on small trees with small numbers of bins. However, when the true bin
probability is small, we found that it can lead to negative estimates in a significant number
of cases.

5.2.3. Statistical Efficiency

Statistical efficiency has received little attention in the literature, perhaps because of the
inherent assumption that a large number of probes can be obtained easily. In reality,
however, active experimentation perturbs the network, and so too much probing in a short
period of time can end up causing delay and losses on the network. If we spread the probing
over an extended period, it will invalidate the stationarity assumption. As a result, one has
to limit the number of probes, so any effective estimator must be reasonably efficient.

We also note that it is difficult to compare the statistical efficiencies of estimates based
on bicast or other flexicast experiments with those based on an omnicast experiment as
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Fig. 6. Boxplots of the estimates for α1(4), α2(4), and α4(4) for three multicast-based estimators.
MSE in parentheses.

they are not on equal footing. If the total number of probes is fixed, the total amount of
expected traffic is different for omnicast and flexicast experiments. Even if we fix the total
amount of expected traffic on all links under the schemes, different links will have different
expected numbers of probes. It is not possible to make the expected number of probes in
each link be the same under the different schemes. Moreover, omnicast experiments contain
information about all higher-order moments while the flexicast experiments are designed to
sacrifice the higher-order moments to reduce data complexity.

To keep the comparisons meaningful, we will examine the efficiencies of estimation meth-
ods based on omnicast and bicast experiments separately. The comparisons here are based
on a three-layer symmetric binary tree. The link delay distributions were chosen to be
truncated geometric with five bins.

Figure 6 shows the performance of the full EM-based MLE, PLE, and the polynomial
estimator for the last bin for three links: α1(4), α2(4), and α4(4). The size of the omnicast
experiment was 20,000 total probes. Recall that α1 is the first link on the tree while α4

corresponds to one of the receiver nodes. The figure suggests that the bias is small (medians
close to the true values). The performance of the PLE is close to that of the MLE on links
1 and 4 with IQR ratios of 1.01 and 1.06. The performance on the interior link is somewhat
worse with an IQR ratio of 1.38. This conclusion seems to be true in general; i.e., the
relative performance of the PLE gets worse as one moves to the interior of the tree. So
we would expect the performance to be poor for internal nodes in the middle of a large
tree with many layers. The polynomial estimator, on the other hand, is considerably less
efficient in all three cases with IQR ratios of 1.36, 3.18, and 2.47. Mean squared error
(MSE, shown on the plots beneath the labels) tells a similar story. The MSE for the PLE
is 1.39, 1.72 and 1.09 times as large as that of the MLE and the MSE for the polynomial
estimator 1.46, 7.49, and 6.11 times as large as that of the MLE. We also compared the
performance of the estimators for other bins and links. In general, the performance of the
polynomial estimator is quite good for the first link (~α1) but gets progressively worse as we
move deeper down the tree. This is because the polynomial estimator uses a lot of the data
in estimating the first link but uses less and less data as we move down.

For the bicast-based estimators, we considered two different experiments: (i) all possible
pairs and (ii) min+1. The estimators include all-pairs MLE, all-pairs grafting, min+1 MLE,
and min+1 grafting. The comparisons of the estimators for the first and last bins are shown
in Figures 7 and 8 respectively. In terms of precision, the min+1 MLE is very comparable
to the all-pairs MLE except for estimating α2(4). For α4(4), it is actually slightly better.
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This can be explained by the fact that the min+1 experiment allocates more probes for a
scheme, 〈4, 5〉, that isolates link 4 thereby giving us a more precise estimate for this link.
The grafting algorithms do slightly worse than the MLEs. For the all-pairs experiment,
the IQR ratios of the grafting estimates to the MLEs for the zero bin on links 1, 2, and 4
are 1.27, 1.02, and 1.41. For the four bin, they are 1.23, 2.16, and 1.56. For the min+1
experiment, the IQR ratios for the zero bins on links 1, 2, and 4 are 1.44, 1.65, and 1.19.
For the four bin they are 1.80, 1.44, and 1.74. In general the less precise algorithms do not
perform as well in the interior of the tree at the tails of the distributions.

Examining the mean-squared error gives us further information that includes the appar-
ent bias observed in the plots for some of the zero bins. The MSEs reflect this bias as the
grafting algorithms have smaller MSEs than the MLE, despite having a larger spread. This
effect disappears on the later bins and we see the same general trend as that indicated by
the IQRs.

6. Optimal Allocation of Probes

We now turn to an important issue in designing flexicast experiments, viz., how to optimally
allocate the number of probes among the various schemes within a flexicast experiment. The
question of interest is the following: given a fixed budget of probes, how should they be
allocated among the various flexicast schemes?

It turns out that the optimal allocations depend on the values of the unknown delay
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distributions and the tree topology. This is called local optimality in the design literature
(Chernoff, 1953). We describe results from a limited study based on binary, symmetric trees
and bicast schemes to provide some insights and suggest suggest how one could go about
studying the problem in general. A comprehensive study of this problem is part of on-going
work.

We conduct our study on a three-layer binary, symmetric tree (left panel of Figure 2).
For each link delay distribution, we use a geometric distribution truncated to five bins.
Based on our experience with real data and the network simulator, the truncated geometric
distribution is a reasonable choice with its large mass at zero and decaying tails. We let the
parameter of the distributions range from p = 0.1 to p = 0.9 with a step size of 0.1. This
range allows us to consider very good links with light tails (p = 0.9) and more congested
links with heavier tails (p = 0.1).

We us the following bicast experiment: C = {〈4, 5〉, 〈6, 7〉, 〈5, 6〉, 〈4, 7〉}. Note that the
last two schemes split at node 1 while first two schemes split at a lower level. We view links
1, 4, 5, 6, and 7 as edge links while links 2 and 3 will be considered internal/back bone
links. Links of the same type (edge, backbone) will have the same distribution. Based on
this symmetry, the optimal proportion of probes sent to schemes 〈4, 5〉 and 〈6, 7〉 should be
equal; likewise for schemes 〈5, 6〉 and 〈4, 7〉. Let τ refer to the total proportion of probes
sent to first group; then the second group will get a proportion 1 − τ . The design problem
is to identify the optimal value of τ .

The criterion we use here is D-optimality, commonly used in the experimental design
literature. Specifically, the optimal value of τ is obtained by maximizing the determinant
of the Fisher information matrix. As noted before, this value depends on the unknown
parameters of the delay distributions, in addition to the tree topology. This is referred to
as local D-optimality.

First, we consider the optimal τ for the situation in which all the link-level distributions
are identical. Interestingly, the optimal value of τ is constant (around .75) as p ranges from
.1 to about .8 and then decreases slightly to about 0.7 as p increases to 0.9. Based on
this, the bicast pairs 〈4, 5〉 and 〈6, 7〉, which split at a lower level in the tree, should get
about 35−37% of the probes each while pairs 〈5, 6〉 and 〈4, 7〉, which split at a higher level,
should receive only about 12−15% of the probes. Note the pairs that split at the lower level
provide the most information for estimating the receiver links. Further, the total number
of probes at each link varies: under the above optimal setting, all the probes pass through
the link at the top layer, links in layer two (the “backbone” links) each see about 3/4 of
the probes, and those at layer three (receiver links) each see only 1/4 of the probes.

Figure 9 shows the optimal allocations for a two-dimensional situation: the edge links
(link 1 and the receiver links) have the same truncated geometric distribution with “failure”
probability p1 (x-axis) while the backbone links 2 and 3 have the same distribution with
probability p2 (y-axis). The z-axis shows the values of τ , the optimal allocation. For most
of the p1 − p2 values, the optimal value of τ is between 0.6 − 0.8, again indicating that
a higher proportion should be sent to the bicast pairs that split at the lower level. The
exception is when the failure probability p2 of the backbone links become larger than about
0.8 and p1 is in the range 0.1 − 0.5, the values of τ decrease, implying that the pairs that
split at a higher level should get a larger proportion of the probes. This is likely due to the
higher congestion on link 1 as compared with the backbone links. Probes splitting at node
1 help to provide a good estimate of link 1 which is important in this case for sorting out
the links below it.

The above results provide some limited insights into the optimal allocation issue. As
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Fig. 9. The optimal allocation of probes will all links the same (left panel) and the optimal allocation
of probes with interior links the same and edge links the same (right panel).

noted before, the optimal results depend on the unknown delay distributions, so one cannot
obtain universally optimal results for all distributions. In practice, one can take a number of
different approaches in getting efficient (or close to efficient) probe allocations. The simplest
is to use prior knowledge based on historical information and treat it as the truth. A better
alternative that uses prior information more formally is the use of Bayesian optimal design
techniques (see, for example, Chaloner and Verdinelli, 1995). However, this is a complex,
non-linear optimal design problem. Perhaps the most practical alternative is to use a two-
stage experimentation where the estimates from the first stage are used to obtain the optimal
estimates for the second stage probing.

7. Simulation Studies

In this section, we use simulation to assess the performance of the estimation methods under
two scenarios: a) under the stochastic model assumptions in Section 2 and b) using the ns-2
network simulator.

7.1. Model-Based Simulation
Our simulation studies showed that if the true link-level distributions are discrete, the MLE
as well as grafting methods are able to recover the link-level estimates well without any
bias. When the true distributions are continuous, however, the binning seems to introduce
some bias. The problem arises from the fact that the end-to-end data are grouped into bins,
so we have discretized sums instead of sums of discrete values from each link. The extent
of the bias depends on the bin size, the link, and other variables.

To develop some insights, we considered a three-layer symmetric binary tree (left panel of
Figure 2) and focused on the MLE for a minimum bicast experiment. Each link distribution
was taken to be a mixture of exponential with mean one and point mass at 0. The point
mass, corresponding to no delay, is common in many real situations. Various bin sizes and
point mass probabilities were considered in the study. Figure 10 show the results from links
1, 2, and 4 (link 3 has the same behavior as 2 and links 5, 6, and 7 have the same behavior
as 4) with a bin size of q = 0.25 and a point mass with probability p = 0.2.
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Fig. 10. Observed and estimated distributions for links 1, 2, and 4 showing bias when the estimation
is applied to binned end-to-end data. The distributions are exponential with mean 1 mixed with point
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.

In general, the largest bias occurs for the zero bin (αk(0)); if point-mass probabilities or
bin sizes increase, this bias gets smaller. For instance, for a bin size of q = 0.25 and point-
mass probabilities of 0.1, 0.2, and 0.4, the underestimate of the zero probability on link 4 is
34%, 24%, and 9% respectively. For a bin size of q = 4, the corresponding underestimates
reduce to 8%, 6%, and 4%. Note also from Figure 10 that the bias is greatest for the receiver
node (link 4) and decreases as one goes up to the source node.

The effect of this bias on the other bins is much smaller. For the most part, the bias at
the zero bin seems to be spread across the rest of the distribution. The estimate at bin 1
seems to compensate somewhat more than the other bins. There is also some compensation
across links; the zero bin for link 1 is overestimated while the zero bins for other links are
underestimated. We are currently exploring some methods for correcting this bias.

7.2. Network Simulation
We now examine the performance of the proposed estimators in a realistic network envi-
ronment by using the ns-2 (Information Sciences Institute, 2004) simulation package. This
allows one to construct any topology, generate traffic, and transmit packets using real net-
work protocol. It gives users control over the hardware and software aspects of a network
including bandwidth, propagation delay, traffic volume, and traffic protocol. We constructed
the topology shown in Figure 1 to mimic the UNC network. For links between core routers,
we used 500 megabit links and for links to endpoints, we used 50 megabit links. Background
traffic on the core links consists of 27 TCP connections and 5 UDP connections. TCP con-
nections acknowledge reception of packets by the receiver. Lost packets are retransmitted
by the sender and result in a slower transmission rate. Therefore, TCP connections are
responsive to congestion. UDP connections do not have any of the above features and con-
tinue to send packets at a constant rate, thus being unresponsive to congestion patterns.
On the edge links, the background consists of 6 TCP connections and 1 UDP connection.
The probe traffic consists of 40 bit UDP packets using the multicast protocol.

Every one tenth of a second, the probing mechanism selects a scheme at random from C =
{〈4, 5〉, 〈6, 7〉, 〈8, 10〉, 〈11, 12〉, 〈13, 14〉, 〈15, 16〉, 〈17, 18〉} and sends a packet to its receivers.
Probing lasts for 700 seconds resulting in about 1000 packets sent to each pair. This is
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approximately the length of a session that we would use for monitoring a real network. The
end-to-end delays are discretized using a bin size of q = .00005s. This is an extremely fine
scale resulting in a maximum link delay setting of b = 155. Furthermore, the ns-2 package
allows us to record the true link delays and hence directly obtain the link delay distributions
for verification.

Figures 11 and 12 show the fitted distributions along with the observed distributions
for selected links. We see the effect of the bias from binning discussed in the last section.
Aside from this, the estimation procedure does a very good job of capturing the distribution
despite a violation of the temporal and spatial independence assumptions in the model. The
results show that the estimation procedure performs well in a real network setting.
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Fig. 11. Observed and estimated delays for links 1 and 2 of the ns-2 example.
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Fig. 12. Observed and estimated delays for links 6, 11 and 15 of the ns-2 example.

8. Application to the UNC Campus Network Data

We now illustrate the usefulness of the results developed here by applying them to the UNC
campus network to assess VoIP capabilities. As discussed before, this real-time application
requires excellent link quality in order to be successful. In particular, the presence of any
large delays can significantly reduce the quality of the phone calls. We have collected
extensive amounts of data but report here only selected results based on data collected at
two-hour intervals starting at 8:00 a.m. and ending at 2:00 a.m. on a typical school day.
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Fig. 13. Probability of large delay on each link throughout the day.
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Fig. 14. Delay distribution for Davis Library at 12:00 p.m. and 10:00 p.m. (left panel) for South Bldg.
(middle panel) and Hinton Dorm (right panel).
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The data were collected using a tool designed by Avaya Labs for testing a network’s
readiness for VoIP. There are two parts to the tool. First, there are the monitoring devices:
computers deployed throughout the network with the capability of exchanging VoIP-style
traffic. These devices run an operating system that allows them to accurately measure the
time at which packets are sent and received. The machines collect these time stamps and
report them back to the second part of the system: the collection software. This software
remotely controls the devices and determines all the features of each call, such as source-
destination devices, start time, duration, and protocol which includes the inter-packet time
intervals. The software collects the time stamps when the calls are finished and processes
them. The processing consists of adjusting the time stamps to account for the difference
among the machines’ clocks, and then calculating the one-way end-to-end delays.

For the data collection, Sitterson served as the root, and we used seven bicast pairs
to cover the 14 receiver nodes: C = {〈4, 5〉, 〈6, 7〉, 〈8, 10〉, 〈11, 12〉, 〈13, 14〉, 〈15, 16〉, 〈17, 18〉}.
The network only allowed the unicast transmission protocol, so back-to-back probing was
used to simulate multicast transmissions. The span of time between the two packets com-
prising the back-to-back probe was on the order of a few nanoseconds while the time between
successive probes was one tenth of a second. Prior experimentation using the call synthesis
tool and this probing method leads us to believe that the correlation between the two pack-
ets on the shared links is close to one. Each probing session consisted of two passes through
the pairs in the order presented. On each pass, each pair was probed for 50 seconds. Thus,
we have 1000 probes for each pair during each monitoring session. Maximum likelihood
estimation was used to deconvolve the link distributions.

In this section, we present results related only to discovering links that have significant
probabilities of large delays. For this reason, we used a bin size of q = .0002s. Above this
threshold, delays can become detrimental to call quality. We expect that most links in this
network would have distributions with most of the mass on the zero bin. Nonetheless, a
mass as low as .01 on the rest of the delays could prove troublesome.

Figure 13 shows the probability of delays larger than .0002 seconds at various times
throughout the day. First, note that the links between the main core routers are of very
high quality. The Sitterson outgoing link is also extremely good. The rest of the links do
experience some congestion, varying over the course of the day. Many of the school buildings
show a diurnal effect with lots of activity contributing to higher delays starting around noon
and continuing throughout the afternoon. In particular, there is a bit of a spike around 4:00
p.m. This spike is evident on link 9 which is a larger core-to-core router. The dormitory
links show more consistent traffic throughout the entire day with some elevated delays in
the later evening. Links that show 1% or more large delays would likely require an upgrade
in order to be able to handle the increased load placed upon them by VoIP which uses a
more aggressive protocol than the prevalent TCP traffic. Several receiver links already show
close to 5% large delays without a strong VoIP presence. Even the large link 9 seems to be
problematic as it needs to perform almost flawlessly in order to handle considerably more
traffic than the receiver links.

To look at some aspects of the analysis in more detail, we solved the inverse problem
using a bin size of q = .00002s for the time periods 12:00 p.m. and 10:00 p.m. This gave
us ten times the resolution of the above analysis. Further, it allowed us to break down the
previous analysis to see where the delays fall within the smallest bin. Figure 14 show the
first 20 bins of these detailed results for Davis Library, South Building, and Hinton Dorm
respectively. The first thing to note is that most of the mass is still on the lowest bins so
the vast majority of packets experience very little delay. Both Davis and South exhibit a
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strong diurnal effect. Unlike the dorm, the traffic in these buildings dies off late at night.
The analyses of other similar data sets collected on the network over a period of time

showed remarkable stability in the results and conclusions. These delay probabilities in-
dicated to the UNC IT group that the current network is not capable of supporting the
VoIP application. From our point of view, the results are qualitatively consistent with
the overall behavior that is to be expected for this network. This serves as a validation
of the techniques of the techniques studied here, both from statistical and implementation
perspectives.

9. Concluding Remarks

We have introduced a flexible class of probing experiments for active network tomography
and studied the properties of several methods for estimating the link-level delay distributions
of computer and communications networks. Both simulation and real data were used to
illustrate the usefulness of the methodology. The use of the full EM algorithm is practical for
small to moderate trees, especially with minimum-identifiable flexicast experiments (bicast
and unicast schemes). With larger networks, the grafting algorithm proposed in the paper
provides a practical alternative. The fast algorithm is especially useful for monitoring the
networks to detect degradation in quality of service and quickly localize the problem to
links or small regions of the network. We are currently studying monitoring and diagnostic
procedures for this problem.

We have followed the literature in the area in making a number of simplifying assump-
tions. For example, the logical topology of the network has been assumed to be single
source, known and fixed. Extensions to multi-source topologies, although conceptually
straightforward, nevertheless introduce technical challenges that are currently under inves-
tigation. Further, in practice, the network’s topology can be to a certain degree unknown
or changing periodically. There is on-going work in the network engineering literature to
address these topics. The assumption of spatio-temporal stationarity is also commonly
made in this area. As we have noted, the temporal stationarity assumption is not critical
as the time-between-probes is on the order of milliseconds. The spatial assumption is more
problematic although more realistic models can be developed only in the context of spe-
cific real networks. There is also additional work required to assess the performance of the
methods for larger networks. We note, however, that even if the actual network is large,
one typically aggregates many of the links and focuses on a smaller topology for studying
network performance.
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A. Proof of Proposition 1

We first establish sufficiency of an omnicast experiment. This will show that an individual k-
cast scheme identifies all of the distributions on the paths between source, branching nodes,
and receivers of its subtrees. We can then show that the above conditions guarantee that
we have enough subtrees to solve for every link delay distribution. The proof of necessity
will proceed by contradiction.
For omnicast probing, we consider two cases:
Case 1 – Receiver node k: Consider all omnicast probes that result in zero delay on all
remaining receivers except k. This set of probes allow us to estimate ~αk as these probes
consist of direct observations from link k.
Case 2 – Internal node k: We proceed by induction. Suppose we have identified the distri-
butions for all links that are descendants of k. Let R(k) represent the receivers descended
from k. Consider probes that result in zero delay on all nodes except those in R(k) which
all experience i delay. Let γk(i) be the probability that each r ∈ R(k) has an end-to-end
delay of i. From this, we can estimate γk(i) for each i. Since we have estimates of link
delay distributions of the descendants of k, we can now estimate ~αk.

This proof implies that a single k-cast scheme will identify the following distributions:
the path between the source and and the first splitting node, the paths between any two
splitting nodes, and the paths between a splitting node and a receiver. Now we focus on a
collection of flexicast schemes. Here we consider three cases.
Case 1: There is some k-cast scheme Cj in which branching occurs at node 1, the only child
of the root node. Based on the omnicast identifiability proof, this experiment identifies the
delay distribution for link 1, ~α1.
Case 2: Let s be some internal node. Assume that we have identified all of the delay
distributions for links k ∈ P0,f(s). There is a scheme Cj for which branching occurs at node
s. This scheme identifies the path-level distribution ~π0,s. We can construct ~π0,f(s) and solve
for ~αs:

αs(0) = π0,s(0)/π0,f(s),

αs(d) =
1

π0,f(s)(0)



π0,s(d) −
d−1
∑

δ=max(0,d−Bf(s))

αs(δ)π0,f(s)(d − δ)



 ∀d = 1, . . . , b,

where Bf(s) is the maximum delay up to this node. We call this solution peeling since we
are peeling the unknown distribution from the path-level distributions. It can be used more
generally and take other functional forms.
Case 3: Let r be some receiver node. Assume that we have identified all of the delay
distributions for links k ∈ P0,f(r). There is some scheme Cj which probes receiver r. From
this, we can estimate the path probability π0,r. We can construct ~π0,f(r) and use peeling
to get ~αr.

It is easy to see the necessity of covering all of the receivers: if we do not probe a receiver,
we can never estimate its link delay distribution. To see the necessity of branching at each
internal node, consider a collection of schemes in which branching occurs at all internal
nodes except some node s. Each link d ∈ D(s) will always occur as part of a logical link
that also includes link s. We will be able to obtain estimates for ~πf(s),d for each d ∈ D(s) but
we will have no information with which to peel the two apart. In essence, these estimates
are like unicast measurements which are not sufficient for estimation.
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